Using Qdrant for Embeddings Search with C#
I recently wrote a .NET client for the Qdrant vector database and ended up contributing it to the official Qdrant .NET SDK. A question came up from a user asking how to adapt an OpenAI cookbook article written in Python using the qdrant python client, to C# using the .NET SDK. This is the topic of today's post.
c# (16)
asp.net mvc (8)
javascript (6)
jquery (5)
search (4)
elasticsearch (4)
nest (3)
openai (2)
async (2)
asynchrony (2)
await (2)
f# (2)
dependency injection (2)
castle windsor (2)
model binding (2)
validation (2)
llm (1)
csharp (1)
ocr (1)
translation (1)
vector search (1)
qdrant (1)
x509 (1)
certificate (1)
ssl (1)
tls (1)
bouncy castle (1)
statiq (1)
github (1)
query (1)
array (1)
internalsvisibleto (1)
dotnet (1)
msbuild (1)
friend assemblies (1)
monitoring (1)
windows (1)
process (1)
procmon (1)
vagrant (1)
winrm (1)
powershell (1)
task parallel library (1)
tpl (1)
gnaf (1)
addresses (1)
australia (1)
sql server (1)
akka (1)
akka.net (1)
reactive (1)
actor model (1)
agents (1)
versioning (1)
optimistic concurrency (1)
geospatial (1)
geojson (1)
geometry (1)
resharper (1)
semanticmerge (1)
git (1)
refactoring (1)
clean code (1)
windows services (1)
topshelf (1)
masstransit (1)
email (1)
acceptance tests (1)
specflow (1)
smtp4dev (1)
bdd (1)
wsfederationauthenticationmodule (1)
classic asp (1)
windows identity foundation (1)
wif (1)
nuget (1)
asp.net web api (1)
parameter binding (1)
csv (1)
valueprovider (1)
signal r (1)
ndc 2012 (1)
conferences (1)
events (1)
razor (1)
continuation passing style (1)
captcha (1)
routing (1)
modelmetadata (1)
podcasts (1)